Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model
نویسندگان
چکیده
Load forecasting (LF) is an essential factor in power system management. LF helps the utility maximize utilization of power-generating plants and schedule them both reliably economically. In this paper, a novel hybrid method proposed, combining long short-term memory network (LSTM) neural prophet (NP) through artificial network. The paper aims to predict electric load for different time horizons with improved accuracy as well consistency. proposed model uses historical data, weather statistical features obtained from data. Multiple case studies have been conducted two real-time data sets on three types forecasting. later compared few established methods found literature performance metrics: mean average percentage error (MAPE), root square (RMSE), sum (SSE), regression coefficient (R). Moreover, guideline various attributes provided considering applications model. results comparisons our test cases showed that over other techniques.
منابع مشابه
Building a Fuzzy Expert System for Electric Load Forecasting Using a Hybrid Neural Network
This paper presents the development of a hybrid neural network to model a fuzzy expert system for time series forecasting of electricc load. The hybrid neural network is trained to develop fuzzy logic rules andjind optimal inputloutput membership values of load and weather parameters. A hybrid learning algorithm consisting of unsupervised and supervised learning phases is used for training the ...
متن کاملElectric Load Forecasting Using An Artificial Neural Network
This paper presents an artificial neural network(ANN) approach to electric load forecasting. The ANN is used to learn the relationship among past, current and future temperatures and loads. In order to provide the forecasted load, the ANN interpolates among the load and temperature data in a training data set. The average absolute errors of the one-hour and 24-hour ahead forecasts in our test o...
متن کاملMedium Term Electric Load Forecasting Using TLFN Neural Networks
This paper develops medium term electric load forecasting using neural networks, based on historical series of electric load, economic and demographic variables. The neural network chosen for this work is the Time Lagged Feedforward Network (TLFN), which combines conventional network topology (multilayer perceptron) with good handling of time dependencies by means of gamma memory. This is a ver...
متن کاملNeural Networks in Electric Load Forecasting: A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neural networks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANN oriented applications for forecasting are given in the literature. These are classified into five groups: (1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs in...
متن کاملForecasting Air Pollution Concentrations in Iran, Using a Hybrid Model
The present study aims at developing a forecasting model to predict the next year’s air pollution concentrations in the atmosphere of Iran. In this regard, it proposes the use of ARIMA, SVR, and TSVR, as well as hybrid ARIMA-SVR and ARIMA-TSVR models, which combined the autoregressive part of the autoregressive integrated moving average (ARIMA) model with the support vector regression technique...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2022
ISSN: ['1996-1073']
DOI: https://doi.org/10.3390/en15062158