Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model

نویسندگان

چکیده

Load forecasting (LF) is an essential factor in power system management. LF helps the utility maximize utilization of power-generating plants and schedule them both reliably economically. In this paper, a novel hybrid method proposed, combining long short-term memory network (LSTM) neural prophet (NP) through artificial network. The paper aims to predict electric load for different time horizons with improved accuracy as well consistency. proposed model uses historical data, weather statistical features obtained from data. Multiple case studies have been conducted two real-time data sets on three types forecasting. later compared few established methods found literature performance metrics: mean average percentage error (MAPE), root square (RMSE), sum (SSE), regression coefficient (R). Moreover, guideline various attributes provided considering applications model. results comparisons our test cases showed that over other techniques.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building a Fuzzy Expert System for Electric Load Forecasting Using a Hybrid Neural Network

This paper presents the development of a hybrid neural network to model a fuzzy expert system for time series forecasting of electricc load. The hybrid neural network is trained to develop fuzzy logic rules andjind optimal inputloutput membership values of load and weather parameters. A hybrid learning algorithm consisting of unsupervised and supervised learning phases is used for training the ...

متن کامل

Electric Load Forecasting Using An Artificial Neural Network

This paper presents an artificial neural network(ANN) approach to electric load forecasting. The ANN is used to learn the relationship among past, current and future temperatures and loads. In order to provide the forecasted load, the ANN interpolates among the load and temperature data in a training data set. The average absolute errors of the one-hour and 24-hour ahead forecasts in our test o...

متن کامل

Medium Term Electric Load Forecasting Using TLFN Neural Networks

This paper develops medium term electric load forecasting using neural networks, based on historical series of electric load, economic and demographic variables. The neural network chosen for this work is the Time Lagged Feedforward Network (TLFN), which combines conventional network topology (multilayer perceptron) with good handling of time dependencies by means of gamma memory. This is a ver...

متن کامل

Neural Networks in Electric Load Forecasting: A Comprehensive Survey

Review and classification of electric load forecasting (LF) techniques based on artificial neural networks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANN oriented applications for forecasting are given in the literature. These are classified into five groups: (1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs in...

متن کامل

Forecasting Air Pollution Concentrations in Iran, Using a Hybrid Model

The present study aims at developing a forecasting model to predict the next year’s air pollution concentrations in the atmosphere of Iran. In this regard, it proposes the use of ARIMA, SVR, and TSVR, as well as hybrid ARIMA-SVR and ARIMA-TSVR models, which combined the autoregressive part of the autoregressive integrated moving average (ARIMA) model with the support vector regression technique...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2022

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en15062158